Applications of Hamilton’s Compactness Theorem for Ricci flow

نویسنده

  • Peter Topping
چکیده

1 Contents Applications of Hamilton's Compactness Theorem for Ricci flow Peter Topping 1 Applications of Hamilton's Compactness Theorem for Ricci flow 3 Overview 3 Background reading 4 Lecture 1. Ricci flow basics – existence and singularities 5 1.1. Initial PDE remarks 5 1.2. Basic Ricci flow theory 6 Lecture 2. Cheeger-Gromov convergence and Hamilton's compactness theorem 9 2.1. Convergence and compactness of manifolds 9 2.2. Convergence and compactness of flows 11 Lecture 3. Applications to Singularity Analysis 13 3.1. The rescaled flows 13 3.2. Perelman's no local collapsing theorem 14 Lecture 4. The case of compact surfaces – an alternative approach to the results of Hamilton and Chow 17 Lecture 5. The 2D case in general – Instantaneously Complete Ricci flows 21 5.1. How to pose the Ricci flow in general 21 5.2. The existence and uniqueness theory 22 5.3. Asymptotics 24 5.4. Singularities not modelled on shrinking spheres 25 Lecture 6. Contracting Cusp Ricci flows 27 Lecture 7. Subtleties of Hamilton's compactness theorem 31 7.1. Intuition behind the construction 32 7.2. Fixing proofs requiring completeness in the extended form of Hamilton's compactness theorem 33 Bibliography 35 i Overview In these lectures, I will try to give an introduction to two separate aspects of Ricci flow, namely Hamilton's compactness theorem and the very neat theory of Ricci flow in 2D. The target audience consists of graduate students with some background in differential geometry and PDE theory. Hamilton's compactness theorem is an absolutely fundamental tool in the modern theory of Ricci flow. I will spend the early part of the course explaining what this result says – roughly that given an appropriate sequence of Ricci flows, one can pass to a subsequence and get smooth convergence to a limit Ricci flow. In order to make sense of that, we will first look at the details of what it means for a sequence of Ricci flows, or simply of Riemannian manifolds, to converge in the Cheeger-Gromov sense. We will not assume any prior knowledge of this notion, although it will be almost essential to have some basic prior knowledge of Riemannian geometry, including the basic idea of the Riemannian curvature tensor. I will then go on to illustrate the most basic application of the compactness theorem, as envisaged by Hamilton and realised fully by Perelman, by blowing up a singularity to obtain a limit ancient Ricci flow modelling the singularity. To do …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Remarks on Hamilton’s Compactness Theorem for Ricci flow

A fundamental tool in the analysis of Ricci flow is a compactness result of Hamilton in the spirit of the work of Cheeger, Gromov and others. Roughly speaking it allows one to take a sequence of Ricci flows with uniformly bounded curvature and uniformly controlled injectivity radius, and extract a subsequence that converges to a complete limiting Ricci flow. A widely quoted extension of this re...

متن کامل

CHAPTER 3 The Compactness Theorem for Ricci Flow

The compactness of solutions to geometric and analytic equations, when it is true, is fundamental in the study of geometric analysis. In this chapter we state and prove Hamilton’s compactness theorem for solutions of the Ricci flow assuming Cheeger and Gromov’s compactness theorem for Riemannian manifolds with bounded geometry (proved in Chapter 4). In Section 3 of this chapter we also give var...

متن کامل

On the Long-time Behavior of Type-iii Ricci Flow Solutions

We show that three-dimensional homogeneous Ricci flow solutions that admit finite-volume quotients have long-time limits given by expanding solitons. We show that the same is true for a large class of four-dimensional homogeneous solutions. We give an extension of Hamilton’s compactness theorem that does not assume a lower injectivity radius bound, in terms of Riemannian groupoids. Using this, ...

متن کامل

Hamilton’s Ricci Flow

The aim of this project is to introduce the basics of Hamilton’s Ricci Flow. The Ricci flow is a pde for evolving the metric tensor in a Riemannian manifold to make it “rounder”, in the hope that one may draw topological conclusions from the existence of such “round” metrics. Indeed, the Ricci flow has recently been used to prove two very deep theorems in topology, namely the Geometrization and...

متن کامل

Combinatorial Ricci Flows on Surfaces

We show that the analogue of Hamilton’s Ricci flow in the combinatorial setting produces solutions which converge exponentially fast to Thurston’s circle packing on surfaces. As a consequence, a new proof of Thurston’s existence of circle packing theorem is obtained. As another consequence, Ricci flow suggests a new algorithm to find circle packings.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013